理解 Android 进程创建流程

基于Android 6.0的源码剖析, 分析Android进程是如何一步步创建的,本文涉及到的源码:

    /frameworks/base/core/java/com/android/internal/os/
        - ZygoteInit.java
        - ZygoteConnection.java
        - RuntimeInit.java
        - Zygote.java

    /frameworks/base/core/java/android/os/Process.java
    /frameworks/base/core/jni/com_android_internal_os_Zygote.cpp
    /frameworks/base/core/jni/AndroidRuntime.cpp
    /frameworks/base/cmds/app_process/App_main.cpp (内含AppRuntime类)

    /bionic/libc/bionic/fork.cpp
    /bionic/libc/bionic/pthread_atfork.cpp

    /libcore/dalvik/src/main/java/dalvik/system/ZygoteHooks.java
    /art/runtime/native/dalvik_system_ZygoteHooks.cc
    /art/runtime/Runtime.cc
    /art/runtime/Thread.cc
    /art/runtime/signal_catcher.cc

一. 概述

准备知识

本文要介绍的是进程的创建,先简单说说进程与线程的区别。

进程:每个App在启动前必须先创建一个进程,该进程是由Zygote fork出来的,进程具有独立的资源空间,用于承载App上运行的各种Activity/Service等组件。进程对于上层应用来说是完全透明的,这也是google有意为之,让App程序都是运行在Android Runtime。大多数情况一个App就运行在一个进程中,除非在AndroidManifest.xml中配置Android:process属性,或通过native代码fork进程。

线程:线程对应用开发者来说非常熟悉,比如每次new Thread().start()都会创建一个新的线程,该线程并没有自己独立的地址空间,而是与其所在进程之间资源共享。从Linux角度来说进程与线程都是一个task_struct结构体,除了是否共享资源外,并没有其他本质的区别。

在接下来的文章,会涉及到system_server进程和Zygote进程,下面简要这两个进程:

  • system_server进程:是用于管理整个Java framework层,包含ActivityManager,PowerManager等各种系统服务;
  • Zygote进程:是Android系统的首个Java进程,Zygote是所有Java进程的父进程,包括 system_server进程以及所有的App进程都是Zygote的子进程,注意这里说的是子进程,而非子线程。

如果想更进一步了解system_server进程和Zygote进程在整个Android系统所处的地位,可查看我的另一个文章Android系统-开篇

进程创建图

对于大多数的应用开发者来说创建线程比较熟悉,而对于创建进程并没有太多的概念。对于系统工程师或者高级开发者,还是有很必要了解Android系统是如何一步步地创建出一个进程的。先来看一张进程创建过程的简要图:

图解:

  1. App发起进程:当从桌面启动应用,则发起进程便是Launcher所在进程;当从某App内启动远程进程,则发送进程便是该App所在进程。发起进程先通过binder发送消息给system_server进程;
  2. system_server进程:调用Process.start()方法,通过socket向zygote进程发送创建新进程的请求;
  3. zygote进程:在执行ZygoteInit.main()后便进入runSelectLoop()循环体内,当有客户端连接时便会执行ZygoteConnection.runOnce()方法,再经过层层调用后fork出新的应用进程;
  4. 新进程:执行handleChildProc方法,最后调用ActivityThread.main()方法。

接下来,依次从system_server进程发起请求Zygote创建进程,再到新进程的运行这3大块展开讲解进程创建是一个怎样的过程。

二. system_server发起请求

1. Process.start

[-> Process.java]

    public static final ProcessStartResult start(final String processClass,
                              final String niceName,
                              int uid, int gid, int[] gids,
                              int debugFlags, int mountExternal,
                              int targetSdkVersion,
                              String seInfo,
                              String abi,
                              String instructionSet,
                              String appDataDir,
                              String[] zygoteArgs) {
        try {
             //【见小节2】
            return startViaZygote(processClass, niceName, uid, gid, gids,
                    debugFlags, mountExternal, targetSdkVersion, seInfo,
                    abi, instructionSet, appDataDir, zygoteArgs);
        } catch (ZygoteStartFailedEx ex) {
            throw new RuntimeException("");
        }
    }

2. startViaZygote

[-> Process.java]

    private static ProcessStartResult startViaZygote(final String processClass,
                                  final String niceName,
                                  final int uid, final int gid,
                                  final int[] gids,
                                  int debugFlags, int mountExternal,
                                  int targetSdkVersion,
                                  String seInfo,
                                  String abi,
                                  String instructionSet,
                                  String appDataDir,
                                  String[] extraArgs)
                                  throws ZygoteStartFailedEx {
        synchronized(Process.class) {
            ArrayList<String> argsForZygote = new ArrayList<String>();

            argsForZygote.add("--runtime-args");
            argsForZygote.add("--setuid=" + uid);
            argsForZygote.add("--setgid=" + gid);
            argsForZygote.add("--target-sdk-version=" + targetSdkVersion);

            if (niceName != null) {
                argsForZygote.add("--nice-name=" + niceName);
            }
            if (appDataDir != null) {
                argsForZygote.add("--app-data-dir=" + appDataDir);
            }
            argsForZygote.add(processClass);

            if (extraArgs != null) {
                for (String arg : extraArgs) {
                    argsForZygote.add(arg);
                }
            }
             //【见小节3】
            return zygoteSendArgsAndGetResult(openZygoteSocketIfNeeded(abi), argsForZygote);
        }
    }

该过程主要工作是生成argsForZygote数组,该数组保存了进程的uid、gid、groups、target-sdk、nice-name等一系列的参数。

3. zygoteSendArgsAndGetResult

[-> Process.java]

    private static ProcessStartResult zygoteSendArgsAndGetResult(
            ZygoteState zygoteState, ArrayList<String> args)
            throws ZygoteStartFailedEx {
        try {
            //其中zygoteState 【见小节3.1】
            final BufferedWriter writer = zygoteState.writer;
            final DataInputStream inputStream = zygoteState.inputStream;

            writer.write(Integer.toString(args.size()));
            writer.newLine();

            int sz = args.size();
            for (int i = 0; i < sz; i++) {
                String arg = args.get(i);
                if (arg.indexOf('\n') >= 0) {
                    throw new ZygoteStartFailedEx(
                            "embedded newlines not allowed");
                }
                writer.write(arg);
                writer.newLine();
            }

            writer.flush();

            ProcessStartResult result = new ProcessStartResult();
            //等待socket服务端(即zygote)返回新创建的进程pid;
            //对于等待时长问题,Google正在考虑此处是否应该有一个timeout,但目前是没有的。
            result.pid = inputStream.readInt();
            if (result.pid < 0) {
                throw new ZygoteStartFailedEx("fork() failed");
            }
            result.usingWrapper = inputStream.readBoolean();
            return result;
        } catch (IOException ex) {
            zygoteState.close();
            throw new ZygoteStartFailedEx(ex);
        }
    }

这个方法的主要功能是通过socket通道向Zygote进程发送一个参数列表,然后进入阻塞等待状态,直到远端的socket服务端发送回来新创建的进程pid才返回。

3.1 openZygoteSocketIfNeeded

    private static ZygoteState openZygoteSocketIfNeeded(String abi) throws ZygoteStartFailedEx {
        if (primaryZygoteState == null || primaryZygoteState.isClosed()) {
            try {
                //向主zygote发起connect()操作
                primaryZygoteState = ZygoteState.connect(ZYGOTE_SOCKET);
            } catch (IOException ioe) {
                ...
            }
        }

        if (primaryZygoteState.matches(abi)) {
            return primaryZygoteState;
        }

        if (secondaryZygoteState == null || secondaryZygoteState.isClosed()) {
            //当主zygote没能匹配成功,则采用第二个zygote,发起connect()操作
            secondaryZygoteState = ZygoteState.connect(SECONDARY_ZYGOTE_SOCKET);
        }

        if (secondaryZygoteState.matches(abi)) {
            return secondaryZygoteState;
        }
        ...
    }

openZygoteSocketIfNeeded(abi)方法是根据当前的abi来选择与zygote还是zygote64来进行通信。

既然system_server进程的zygoteSendArgsAndGetResult()方法通过socket向Zygote进程发送消息,这是便会唤醒Zygote进程,来响应socket客户端的请求(即system_server端),接下来的操作便是在Zygote来创建进程【见小节4】

三. Zygote创建进程

文章Android系统启动-zygote篇已介绍,简单来说就是Zygote进程是由由init进程而创建的,进程启动之后调用ZygoteInit.main()方法,经过创建socket管道,预加载资源后,便进程runSelectLoop()方法。

4. ZygoteInit.main

[-->ZygoteInit.java]

    public static void main(String argv[]) {
        try {
            runSelectLoop(abiList); //【见小节5】
            ....
        } catch (MethodAndArgsCaller caller) {
            caller.run(); //【见小节16】
        } catch (RuntimeException ex) {
            closeServerSocket();
            throw ex;
        }
    }

后续会讲到runSelectLoop()方法会抛出异常MethodAndArgsCaller,从而进入caller.run()方法。

5. runSelectLoop

[-> ZygoteInit.java]

    private static void runSelectLoop(String abiList) throws MethodAndArgsCaller {
        ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
        ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
        //sServerSocket是socket通信中的服务端,即zygote进程。保存到fds[0]
        fds.add(sServerSocket.getFileDescriptor());
        peers.add(null);

        while (true) {
            StructPollfd[] pollFds = new StructPollfd[fds.size()];
            for (int i = 0; i < pollFds.length; ++i) {
                pollFds[i] = new StructPollfd();
                pollFds[i].fd = fds.get(i);
                pollFds[i].events = (short) POLLIN;
            }
            try {
                 //处理轮询状态,当pollFds有事件到来则往下执行,否则阻塞在这里
                Os.poll(pollFds, -1);
            } catch (ErrnoException ex) {
                ...
            }

            for (int i = pollFds.length - 1; i >= 0; --i) {
                //采用I/O多路复用机制,当接收到客户端发出连接请求 或者数据处理请求到来,则往下执行;
                // 否则进入continue,跳出本次循环。
                if ((pollFds[i].revents & POLLIN) == 0) {
                    continue;
                }
                if (i == 0) {
                    //即fds[0],代表的是sServerSocket,则意味着有客户端连接请求;
                    // 则创建ZygoteConnection对象,并添加到fds。//【见小节5.1】
                    ZygoteConnection newPeer = acceptCommandPeer(abiList);
                    peers.add(newPeer);
                    fds.add(newPeer.getFileDesciptor()); //添加到fds.
                } else {
                    //i>0,则代表通过socket接收来自对端的数据,并执行相应操作【见小节6】
                    boolean done = peers.get(i).runOnce();
                    if (done) {
                        peers.remove(i);
                        fds.remove(i); //处理完则从fds中移除该文件描述符
                    }
                }
            }
        }
    }

该方法主要功能:

  • 客户端通过openZygoteSocketIfNeeded()来跟zygote进程建立连接。zygote进程收到客户端连接请求后执行accept();然后再创建ZygoteConnection对象,并添加到fds数组列表;
  • 建立连接之后,可以跟客户端通信,进入runOnce()方法来接收客户端数据,并执行进程创建工作。

5.1 acceptCommandPeer

[-> ZygoteInit.java]

    private static ZygoteConnection acceptCommandPeer(String abiList) {
        try {
            return new ZygoteConnection(sServerSocket.accept(), abiList);
        } catch (IOException ex) {
            ...
        }
    }

接收客户端发送过来的connect()操作,Zygote作为服务端执行accept()操作。
再后面客户端调用write()写数据,Zygote进程调用read()读数据。

没有连接请求时会进入休眠状态,当有创建新进程的连接请求时,唤醒Zygote进程,创建Socket通道ZygoteConnection,然后执行ZygoteConnection的runOnce()方法。

6. runOnce

[-> ZygoteConnection.java]

    boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {

        String args[];
        Arguments parsedArgs = null;
        FileDescriptor[] descriptors;

        try {
            //读取socket客户端发送过来的参数列表
            args = readArgumentList();
            descriptors = mSocket.getAncillaryFileDescriptors();
        } catch (IOException ex) {
            closeSocket();
            return true;
        }

        PrintStream newStderr = null;
        if (descriptors != null && descriptors.length >= 3) {
            newStderr = new PrintStream(new FileOutputStream(descriptors[2]));
        }

        int pid = -1;
        FileDescriptor childPipeFd = null;
        FileDescriptor serverPipeFd = null;

        try {
            //将binder客户端传递过来的参数,解析成Arguments对象格式
            parsedArgs = new Arguments(args);
            ...

            int [] fdsToClose = { -1, -1 };
            FileDescriptor fd = mSocket.getFileDescriptor();
            if (fd != null) {
                fdsToClose[0] = fd.getInt$();
            }

            fd = ZygoteInit.getServerSocketFileDescriptor();
            if (fd != null) {
                fdsToClose[1] = fd.getInt$();
            }
            fd = null;
            //【见小节7】
            pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids,
                    parsedArgs.debugFlags, rlimits, parsedArgs.mountExternal, parsedArgs.seInfo,
                    parsedArgs.niceName, fdsToClose, parsedArgs.instructionSet,
                    parsedArgs.appDataDir);
        } catch (Exception e) {
            ...
        }

        try {
            if (pid == 0) {
                //子进程执行
                IoUtils.closeQuietly(serverPipeFd);
                serverPipeFd = null;
                //【见小节13】
                handleChildProc(parsedArgs, descriptors, childPipeFd, newStderr);

                // 不应到达此处,子进程预期的是抛出异常ZygoteInit.MethodAndArgsCaller或者执行exec().
                return true;
            } else {
                //父进程执行
                IoUtils.closeQuietly(childPipeFd);
                childPipeFd = null;
                return handleParentProc(pid, descriptors, serverPipeFd, parsedArgs);
            }
        } finally {
            IoUtils.closeQuietly(childPipeFd);
            IoUtils.closeQuietly(serverPipeFd);
        }
    }

7. forkAndSpecialize

[-> Zygote.java]

    public static int forkAndSpecialize(int uid, int gid, int[] gids, int debugFlags,
          int[][] rlimits, int mountExternal, String seInfo, String niceName, int[] fdsToClose,
          String instructionSet, String appDataDir) {
        VM_HOOKS.preFork(); //【见小节8】
        int pid = nativeForkAndSpecialize(
                  uid, gid, gids, debugFlags, rlimits, mountExternal, seInfo, niceName, fdsToClose,
                  instructionSet, appDataDir); //【见小节9】
        ...
        VM_HOOKS.postForkCommon(); //【见小节11】
        return pid;
    }

VM_HOOKS是Zygote对象的静态成员变量:VM_HOOKS = new ZygoteHooks();

7.1 Zygote进程

先说说Zygote进程,如下图:

从图中可知Zygote进程有4个Daemon子线程分别是ReferenceQueueDaemon,FinalizerDaemon,FinalizerWatchdogDaemon,HeapTaskDaemon。图中线程名显示的并不完整是由于底层的进程结构体task_struct是由长度为16的char型数组保存,超过15个字符便会截断。

可能有人会问zygote64进程不是还有system_server,com.android.phone等子线程,怎么会只有4个呢?那是因为这些并不是Zygote子线程,而是Zygote的子进程。在图中用红色圈起来的是进程的VSIZE,virtual size),代表的是进程虚拟地址空间大小。线程与进程的最为本质的区别便是是否共享内存空间,图中VSIZE和Zygote进程相同的才是Zygote的子线程,否则就是Zygote的子进程。

8. preFork

[-> ZygoteHooks.java]

     public void preFork() {
        Daemons.stop(); //停止4个Daemon子线程【见小节8.1】
        waitUntilAllThreadsStopped(); //等待所有子线程结束【见小节8.2】
        token = nativePreFork(); //完成gc堆的初始化工作【见小节8.3】
    }

8.1 Daemons.stop

    public static void stop() {
        HeapTaskDaemon.INSTANCE.stop(); //Java堆整理线程
        ReferenceQueueDaemon.INSTANCE.stop(); //引用队列线程
        FinalizerDaemon.INSTANCE.stop(); //析构线程
        FinalizerWatchdogDaemon.INSTANCE.stop(); //析构监控线程
    }

此处守护线程Stop方式是先调用目标线程interrrupt()方法,然后再调用目标线程join()方法,等待线程执行完成。

8.2 waitUntilAllThreadsStopped

    private static void waitUntilAllThreadsStopped() {
        File tasks = new File("/proc/self/task");
        // 当/proc中线程数大于1,就出让CPU直到只有一个线程,才退出循环
        while (tasks.list().length > 1) {
            Thread.yield();
        }
    }

8.3 nativePreFork

nativePreFork通过JNI最终调用如下方法:

[-> dalvik_system_ZygoteHooks.cc]

    static jlong ZygoteHooks_nativePreFork(JNIEnv* env, jclass) {
        Runtime* runtime = Runtime::Current();
        runtime->PreZygoteFork(); // 见下文
        if (Trace::GetMethodTracingMode() != TracingMode::kTracingInactive) {
          Trace::Pause();
        }
        //将线程转换为long型并保存到token,该过程是非安全的
        return reinterpret_cast<jlong>(ThreadForEnv(env));
    }

至于runtime->PreZygoteFork的过程:

    void Runtime::PreZygoteFork() {
        // 堆的初始化工作。这里就不继续再往下追art虚拟机
        heap_->PreZygoteFork();
    }

VM_HOOKS.preFork()的主要功能便是停止Zygote的4个Daemon子线程的运行,等待并确保Zygote是单线程(用于提升fork效率),并等待这些线程的停止,初始化gc堆的工作, 并将线程转换为long型并保存到token

9. nativeForkAndSpecialize

nativeForkAndSpecialize()通过JNI最终调用调用如下方法:

[-> com_android_internal_os_Zygote.cpp]

    static jint com_android_internal_os_Zygote_nativeForkAndSpecialize(
        JNIEnv* env, jclass, jint uid, jint gid, jintArray gids,
        jint debug_flags, jobjectArray rlimits,
        jint mount_external, jstring se_info, jstring se_name,
        jintArray fdsToClose, jstring instructionSet, jstring appDataDir) {
        // 将CAP_WAKE_ALARM赋予蓝牙进程
        jlong capabilities = 0;
        if (uid == AID_BLUETOOTH) {
            capabilities |= (1LL << CAP_WAKE_ALARM);
        }
        //【见流程10】
        return ForkAndSpecializeCommon(env, uid, gid, gids, debug_flags,
                rlimits, capabilities, capabilities, mount_external, se_info,
                se_name, false, fdsToClose, instructionSet, appDataDir);
    }

10. ForkAndSpecializeCommon

top Created with Sketch.