Android 卡顿检测方案

应用的流畅度最直接的影响了 App 的用户体验,轻微的卡顿有时导致用户的界面操作需要等待一两秒钟才能生效,严重的卡顿则导致系统直接弹出 ANR 的提示窗口,让用户选择要继续等待还是关闭应用。

所以,如果想要提升用户体验,就需要尽量避免卡顿的产生,否则用户经历几次类似场景之后,只会动动手指卸载应用,再顺手到应用商店给个差评。关于卡顿的分析方案,已经有以下两种:

  • 分析trace文件。通过分析系统的/data/anr/traces.txt,来找到导致UI线程阻塞的源头,这种方案比较适合开发过程中使用,而不适合线上环境;

  • 使用BlockCanary开源方案。其原理是利用Looper中的loop输出的>>>>> Dispatching to和<<<<< Finished to这样的log,这种方案适合开发过程和上线的时候使用,但也有个弊端,就是如果系统移除了前面两个log,检测可能会面临失效;

下面就开始说本文要提及的卡顿检测实现方案,原理简单,代码量也不多,只有BlockLooperBlockError两个类。

基本使用

在Application中调用BlockLooper.initialize进行一些参数初始化,具体参数项可以参照BlockLooper中的Configuration静态内部类,当发生卡顿时,则会在回调(非UI线程中)OnBlockListener

public class AndroidPerformanceToolsApplication extends Application {
    private final static String TAG = AndroidPerformanceToolsApplication.class.getSimpleName();
    @Override
    public void onCreate() {
        super.onCreate();
        // 初始化相关配置信息
        BlockLooper.initialize(new BlockLooper.Builder(this)
                .setIgnoreDebugger(true)
                .setReportAllThreadInfo(true)
                .setSaveLog(true)
                .setOnBlockListener(new BlockLooper.OnBlockListener() {//回调在非UI线程
                    @Override
                    public void onBlock(BlockError blockError) {
                        blockError.printStackTrace();//把堆栈信息输出到控制台
                    }
                })
                .build());
    }
}

在选择要启动(停止)卡顿检测的时候,调用对应的API

BlockLooper.getBlockLooper().start();//启动检测
BlockLooper.getBlockLooper().stop();//停止检测

使用上很简单,接下来看一下效果演示和源码实现。

效果演示

制造一个UI阻塞效果

看看AS控制台输出的整个堆栈信息

定位到对应阻塞位置的源码

当然,对线程的信息BlockLooper也不仅输出到控制台,也会帮你缓存到SD上对应的应用缓存目录下,在SD卡上的/Android/data/对应App包名/cache/block/**下可以找到,文件名是发生卡顿的时间点,后缀是trace。

源码解读

当App在5s内无法对用户做出的操作进行响应时,系统就会认为发生了ANR。BlockLooper实现上就是利用了这个定义,它继承了Runnable接口,通过initialize传入对应参数配置好后,通过BlockLooper的start()创建一个Thread来跑起这个Runnable,在没有stop之前,BlockLooper会一直执行run方法中的循环,执行步骤如下:

  • Step1. 判断是否停止检测UI线程阻塞,未停止则进入Step2;
  • Step2. 使用uiHandler不断发送ticker这个Runnable,ticker会对tickCounter进行累加;
  • Step3. BlockLooper进入指定时间的sleep(frequency是在initialize时传入,最小不能低于5s);
  • Step4. 如果UI线程没有发生阻塞,则sleep过后,tickCounter一定与原来的值不相等,否则一定是UI线程发生阻塞;
  • Step5. 发生阻塞后,还需判断是否由于Debug程序引起的,不是则进入Step6;
  • Step6. 回调OnBlockListener,以及选择保存当前进程中所有线程的堆栈状态到SD卡等;

```
public class BlockLooper implements Runnable {
...
private Handler uiHandler = new Handler(Looper.getMainLooper());
private Runnable ticker = new Runnable() {
@Override
public void run() {
tickCounter = (tickCounter + 1) % Integer.MAX_VALUE;
}
};
...
private void init(Configuration configuration) {
this.appContext = configuration.appContext;
this.frequency = configuration.frequency < DEFAULT_FREQUENCY ? DEFAULT_FREQUENCY : configuration.frequency;
this.ignoreDebugger = configuration.ignoreDebugger;
this.reportAllThreadInfo = configuration.reportAllThreadInfo;
this.onBlockListener = configuration.onBlockListener;
this.saveLog = configuration.saveLog;
}
@Override
public void run() {
int lastTickNumber;
while (!isStop) { //Step1
lastTickNumber = tickCounter;
uiHandler.post(ticker); //Step2
try {

top Created with Sketch.